283 research outputs found

    Temperature- and Field Dependent Characterization of a Twisted Stacked-Tape Cable

    Full text link
    The Twisted Stacked-Tape Cable (TSTC) is one of the major high temperature superconductor cable concepts combining scalability, ease of fabrication and high current density making it a possible candidate as conductor for large scale magnets. To simulate the boundary conditions of such a magnets as well as the temperature dependence of Twisted Stacked-Tape Cables a 1.16 m long sample consisting of 40, 4 mm wide SuperPower REBCO tapes is characterized using the "FBI" (force - field - current) superconductor test facility of the Institute for Technical Physics (ITEP) of the Karlsruhe Institute of Technology (KIT). In a first step, the magnetic background field is cycled while measuring the current carrying capabilities to determine the impact of Lorentz forces on the TSTC sample performance. In the first field cycle, the critical current of the TSTC sample is tested up to 12 T. A significant Lorentz force of up to 65.6 kN/m at the maximal magnetic background field of 12 T result in a 11.8 % irreversible degradation of the current carrying capabilities. The degradation saturates (critical cable current of 5.46 kA at 4.2 K and 12 T background field) and does not increase in following field cycles. In a second step, the sample is characterized at different background fields (4-12 T) and surface temperatures (4.2-37.8 K) utilizing the variable temperature insert of the "FBI" test facility. In a third step, the performance along the length of the sample is determined at 77 K, self-field. A 15 % degradation is obtained for the central part of the sample which was within the high field region of the magnet during the in-field measurements

    Validation of Puck’s failure criterion for CFRP composites in the cryogenic regime

    Get PDF
    For future launch vehicles, lightweight cryogenic pressure vessels are required for storage of the liquid hydrogen fuel. For their structural assessment, reliable and validated failure criteria are required. The present contribution provides an overview over the results of an ongoing research activity concerned with the validation of Puck’s composite failure criterion in the cryogenic regime. In a first step, an experimental investigation on unidirectionally fiber reinforced materials on coupon level has been performed. This test campaign has been complemented by tests on small breadboard-type specimens with an angle-ply stacking sequence. The specimens were featuring holes and tapered sections to provide stress gradients and concentrations. Test were performed at ambient temperature and in a liquid Helium environment. Puck’s failure criterion has been applied and found to provide a good prediction of first ply failure in both environments

    Snake Trajectories in Ultraclean Graphene p-n Junctions

    Get PDF
    Snake states are trajectories of charge carriers curving back and forth along an interface. There are two types of snake states, formed by either inverting the magnetic field direction or the charge carrier type at an interface. Whereas the former has been demonstrated in GaAs-AlGaAs heterostructures, the latter has become conceivable only with the advance of ballistic graphene where a gapless p-n interface governed by Klein tunneling can be formed. Such snake states were hidden in previous experiments due to limited sample quality. Here we report on magneto-conductance oscillations due to snake states in a ballistic suspended graphene p-n-junction which occur already at a very small magnetic field of 20mT. The visibility of 30% is enabled by Klein collimation. Our finding is firmly supported by quantum transport simulations. We demonstrate the high tunability of the device and operate it in different magnetic field regimesComment: Accepted for publication in Nature Communication

    Revealing the Role of Cross Slip for Serrated Plastic Deformation in Concentrated Solid Solutions at Cryogenic Temperatures

    Get PDF
    Serrated plastic deformation is an intense phenomenon in CoCrFeMnNi at and below 35 K with stress amplitudes in excess of 100 MPa. While previous publications have linked serrated deformation to dislocation pile ups at Lomer–Cottrell (LC) locks, there exist two alternate models on how the transition from continuous to serrated deformation occurs. One model correlates the transition to an exponential LC lock density–temperature variation. The second model attributes the transition to a decrease in cross-slip propensity based on temperature and dislocation density. In order to evaluate the validity of the models, a unique tensile deformation procedure with multiple temperature changes was carried out, analyzing stress amplitudes subsequent to temperature changes. The analysis provides evidence that the apparent density of LC locks does not massively change with temperature. Instead, the serrated plastic deformation is likely related to cross-slip propensity

    Current Redistribution in a Superconducting Multi-Strand 35 kA DC Cable Demonstrator

    Get PDF
    High temperature superconductors (HTS) are discussed as energy-efficient solutions for industrial high-current applications beyond 10 kA e.g., bus bar systems in industrial electrolysis plants. In this contribution, the experimental test of a 3.6-meter-long 35 kA DC demonstrator, made from twelve high-current HTS CrossConductor (HTS CroCo) strands in an liquid nitrogen bath at T = 77 K is presented. In this work, a common connector concept of the twelve HTS CroCo strands is proposed. Compared to earlier results without common connector, lead resistances were effectively reduced and current distribution among the individual strands was significantly facilitated. This is confirmed by the observation of increased critical cable current of 37.6 kA compared to 33 kA in previous work without low-resistive common connector. Additionally, the current range, in which all twelve strands reached their critical electric field, was found to be reduced from >7 kA to 2 kA. Results are discussed and assessed with the help of an electric circuit model, from which the solder resistances at the connections could be obtained by fitting. Particular focus was given to the investigation of current redistribution in the demonstrator. Therefore, a heater was installed on one HTS CroCo strand, and activated to raise the temperature on this strand and quench a single strand locally. It is observed that current is redistributed through the common connectors to the other strands

    Influence of Temperature and Plastic Strain on Deformation Mechanisms and Kink Band Formation in Homogenized HfNbTaTiZr

    Get PDF
    Due to its outstanding ductility over a large temperature range, equiatomic HfNbTaTiZr is well-suited for investigating the influence of temperature and plastic strain on deformation mechanisms in concentrated, body centered cubic solid solutions. For this purpose, compression tests in a temperature range from 77 up to 1073 K were performed and terminated at varying plastic strains for comparison of plastic deformation behavior. The microstructure and chemical homogeneity of a homogenized HfNbTaTiZr ingot were evaluated on different length scales. The compression tests reveal that test temperature significantly influences yield strength as well as work hardening behavior. Electron backscatter diffraction aids in shedding light on the acting deformation mechanisms at various temperatures and strains. It is revealed that kink band formation contributes to plastic deformation only in a certain temperature range. Additionally, the kink band misorientation angle distribution significantly differs at varying plastic strains

    Case Study of the Tensile Fracture Investigation of Additive Manufactured Austenitic Stainless Steels Treated at Cryogenic Conditions

    Get PDF
    Additive manufacturing is a key enabling technology in the manufacture of highly complex shapes, having very few geometric limitations compared to traditional manufacturing processes. The present paper aims at investigating mechanical properties at cryogenic temperatures for a 316L austenitic stainless steel, due to the wide possible cryogenic applications such as liquid gas confinement or superconductors. The starting powders have been processed by laser powder bed fusion (LPBF) and tested in the as-built conditions and after stress relieving treatments. Mechanical properties at 298, 77 and 4.2 K from tensile testing are presented together with fracture surfaces investigated by field emission scanning electron microscopy. The results show that high tensile strength at cryogenic temperature is characteristic for all samples, with ultimate tensile strength as high as 1246 MPa at 4.2 K and 55% maximum total elongation at 77 K. This study can constitute a solid basis for investigating 316L components by LPBF for specific applications in cryogenic conditions

    Case Study of the Tensile Fracture Investigation of Additive Manufactured Austenitic Stainless Steels Treated at Cryogenic Conditions

    Get PDF
    Additive manufacturing is a key enabling technology in the manufacture of highly complex shapes, having very few geometric limitations compared to traditional manufacturing processes. The present paper aims at investigating mechanical properties at cryogenic temperatures for a 316L austenitic stainless steel, due to the wide possible cryogenic applications such as liquid gas confinement or superconductors. The starting powders have been processed by laser powder bed fusion (LPBF) and tested in the as-built conditions and after stress relieving treatments. Mechanical properties at 298, 77 and 4.2 K from tensile testing are presented together with fracture surfaces investigated by field emission scanning electron microscopy. The results show that high tensile strength at cryogenic temperature is characteristic for all samples, with ultimate tensile strength as high as 1246 MPa at 4.2 K and 55% maximum total elongation at 77 K. This study can constitute a solid basis for investigating 316L components by LPBF for specific applications in cryogenic conditions

    Investigation of the Properties of 316L Stainless Steel after AM and Heat Treatment

    Get PDF
    Additive manufacturing, including laser powder bed fusion, offers possibilities for the production of materials with properties comparable to conventional technologies. The main aim of this paper is to describe the specific microstructure of 316L stainless steel prepared using additive manufacturing. The as-built state and the material after heat treatment (solution annealing at 1050 °C and 60 min soaking time, followed by artificial aging at 700 °C and 3000 min soaking time) were analyzed. A static tensile test at ambient temperature, 77 K, and 8 K was performed to evaluate the mechanical properties. The characteristics of the specific microstructure were examined using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The stainless steel 316L prepared using laser powder bed fusion consisted of a hierarchical austenitic microstructure, with a grain size of 25 µm as-built up to 35 µm after heat treatment. The grains predominantly contained fine 300–700 nm subgrains with a cellular structure. It was concluded that after the selected heat treatment there was a significant reduction in dislocations. An increase in precipitates was observed after heat treatment, from the original amount of approximately 20 nm to 150 nm
    corecore